
20 570684 Ch15.qxd 3/31/04 3:00 PM Page 192

192 Part III: Giving Your Programs the Ability to Run Amok

� Don’t forget to declare the variable used in for’s parentheses. This
common mistake is another one made by just about everyone. Refer to
Chapter 8 for more information about declaring variables.

� Here’s a handy plug-in you can use for loops. Just substitute the big X in
the following line for the number of times you want the loop to work:

for(i=1 ; i<=X ; i=i+1)

You must declare i to be an integer variable. It starts out equal to 1 and
ends up equal to the value of X. To repeat a loop 100 times, for example,
you use this command:

for(i=1 ; i<=100 ; i=i+1)

Having fun whilst counting to 100

This section has the source code for a program named 100.C. This program uses
a for loop to count to 100 and display each number on the screen. Indeed, it’s
a major achievement: Early computers could count up to only 50 before they
began making wild and often inaccurate guesses about what number came
next. (Refer to your phone bill to see what I mean.)

The core of 100.C is similar to OUCH.C. In fact, the only reason I have tossed it
in here is that for loops are so odd to some folks that you need two program
examples to drive home the point:

#include <stdio.h>

int main()
{

int i;

for(i=1 ; i<=100 ; i=i+1)
printf(“%d\t”,i);

return(0);
}

Type this source code into your editor. Watch your indentations; it’s traditional
in the C language to indent one statement belonging to another (as shown in
the example), even when the curly braces are omitted.

In the for statement, the i variable starts out equal to 1. The while_true
condition is i<=100 — which means that the loop works, although the value
of variable i is less than or equal to 100. The final part of the statement incre­
ments the value of i by 1 each time the loop works.

